Crash Courses

Crash Courses

[Crash Course #03] Hands On Crash Course on Data Pipelines : How it Actually Works and How to Build ( with Implementation Code)

Everything you need to implement Data Pipelines

Naina Chaturvedi's avatar
Naina Chaturvedi
Nov 21, 2025
βˆ™ Paid

First Complete Part 1 here : [Crash Course #01] A Complete Crash Course on REST APIs : How it Actually Works - Part 1


πŸ“š Table of Contents

Module 1: Foundation & Mental Models

  1. The Coffee Shop Analogy: Understanding Data Flow

  2. The Five Pillars of Data Pipelines

  3. Interactive Lab 1.1: Trace Your First Data Journey

  4. User Flow: How Data Moves in Your Favorite Apps

Module 2: Sources & Ingestion Mastery

  1. Source Types Deep Dive

  2. Batch vs Streaming: The Decision Framework

  3. Interactive Lab 2.1: Build a CSV Batch Ingestion Pipeline

  4. Interactive Lab 2.2: Create a Real-Time Event Stream

  5. User Flow: E-Commerce Order Processing

  6. User Flow: IoT Sensor Data Collection

Module 3: Transformation Techniques

  1. The Art of Data Cleaning

  2. SQL Transformation Patterns

  3. Interactive Lab 3.1: Clean Messy Customer Data

  4. Interactive Lab 3.2: Build a Star Schema

  5. User Flow: Product Analytics Dashboard Creation

Module 4: Advanced Patterns & Architectures

  1. Lambda vs Kappa Architecture

  2. CDC: Capturing Database Changes

  3. Interactive Lab 4.1: Implement a Hybrid Pipeline

  4. User Flow: Real-Time + Historical Analytics

Module 5: Orchestration & Monitoring

  1. Airflow DAGs Demystified

  2. Error Handling & Retry Strategies

  3. Interactive Lab 5.1: Build Your First Airflow DAG

  4. Interactive Lab 5.2: Implement Data Quality Tests

  5. User Flow: Production Pipeline Lifecycle

Module 6: Real-World Case Studies

  1. Case Study 1: Netflix Recommendation Pipeline

  2. Case Study 2: Uber’s Real-Time Pricing

  3. Case Study 3: Spotify’s Daily Mix Generation

  4. Interactive Lab 6.1: Build a Mini Recommendation Engine


Module 1: Foundation & Mental Models

The Coffee Shop Analogy: Understanding Data Flow

Imagine you run a coffee shop. Let’s trace the journey from raw beans to customer satisfaction:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Coffee Farm    β”‚  ← SOURCE (Data Origin)
β”‚  (Raw Beans)    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚ Harvest (Daily)
         ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Shipping Truck β”‚  ← INGESTION (Data Movement)
β”‚  (Transport)    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚ Delivery
         ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Warehouse     β”‚  ← STORAGE (Staging Area)
β”‚  (Raw Storage)  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚ Processing
         ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Roasting Room  β”‚  ← TRANSFORMATION (Cleaning & Processing)
β”‚  (Clean, Roast) β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚ Packaging
         ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Display Case   β”‚  ← DESTINATION (Ready for Use)
β”‚  (Ready Coffee) β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚ Serving
         ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Customer      β”‚  ← CONSUMPTION (End User)
β”‚   (Enjoys)      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

         ↕
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Quality Check  β”‚  ← MONITORING (Throughout)
β”‚   + Manager     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Insight: Just as you wouldn’t serve raw beans to customers, you never serve raw data to analysts. The pipeline is the processing facility.

This post is for paid subscribers

Already a paid subscriber? Sign in
Β© 2025 Naina Chaturvedi
Privacy βˆ™ Terms βˆ™ Collection notice
Start your SubstackGet the app
Substack is the home for great culture